Giovanni Anastasio

tq- System Problem Set

- 1. Write down the axiom schema and the three shortest axioms in the tq- system.
 - a. Axiom schema- xt-qx is an axiom, whenever x is a hyphen-string.
 - b. 3 shortest axioms
 - i. -t-q-
 - ii. -t--q--
 - iii. -t---q----
- 2. Write down the sole rule of inference for the tq- system and apply it to the well-formed string: -----t----q-----.
 - a. The sole rule of inference: suppose that x, y, and z are all hyphen strings. And suppose that xtyqz is an old theorem. Then, xty-qzx is a new theorem.

i. -----t-----q------

- 3. Reasoning in I-mode argue that the string you produced in the previous item is not a theorem in the tq- System.
 - a. The previous item is not a theorem because the first two hyphen groups do not multiply to equal the third hyphen group.
- 4. Working in M-mode show that -----t---q------ is a theorem in the tq- System.
 - a. -----t-q----- Axiom
 - b. -----t--q----- From a
 - c. ----t--q----- From b
- 5. What are the two rules of the C- System?
 - a. The two rules of the C- system are:
 - i. Suppose x, y, and z are hyphen strings. If x-ty-qz is a theorem then Cz is a theorem.
 - ii. Suppose that x is a hyphen string. If Cx is not a theorem, then px is a theorem.
- 6. Working within the C-system, argue that c----- is a theorem of the system.
 - a. ----t-q---- axiom
 - b. ----t--q----- From a by rule of inference
 - c. C----- From b by rule of C systems
- 7. Does adding the following rule to the C- system constitute a Post production system for determining primes? Suppose x is a hyphen-string. If Cx is not a theorem, then px is a theorem. Explain.
 - a. Yes because it will indicate which numbers are prime and if they are not indicated as prime they are composite and vice verse.
- 8. Hofstadter writes: When a figure or "positive space" (eg., a human form, or a letter, or a still life) is drawn inside a frame, an unavoidable consequence is that its complementary shape also called the "ground", or "background", or "negative space" has also been drawn. Explain how the picture is considered negative space.
 - a. The picture of the quiche pan shown has negative space all around the border of the figure, showing the figures true shape

- 9. Answer the following questions with respect to the A-System:
 - a. Show that A----- is a theorem of the A- System by working within the system.
 - i. A-- Axiom
 - ii. A---- From (1)
 - iii. A----- From (2)
 - iv. A----- From (3)
 - b. Specify a decision procedure for determining theorem hood in the A- System.
 - i. There needs to be an even number of hyphens after the A.
 - c. Provide an I-mode argument that the string A----- is not a theorem of the A-System.
 - i. The string A----- is not a theorem of the A- System because there is not an even number of hyphens after the A.
 - d. What subset of the natural numbers do you think it was my intent to capture with the A- System?
 - i. Even numbers
- 10. Consider the as yet to be formally defined B-System which you should imagine is intended to capture precisely all of the natural numbers that the A- System does not capture.
 - a. Propose, by analog with the rule on page 66 of GEB, an invalid rule for producing theorems in the B- System.
 - i. An invalid rule for producing theorems in the B- system is to require an even number of hyphens follow B.
 - b. Define a (valid) Post production system for the B- System in terms of one axiom and one rule.
 - i. B-
 - ii. There needs to be an odd number of hyphens after the B.
 - c. Derive B----- within the B- System.
 - i. B- Axiom
 - ii. B--- From (1)
 - iii. B----- From (2)
 - iv. B----- From (3)
 - v. B----- From (4)
 - vi. B----- From (5)
 - d. What subset of the natural numbers does the B- System capture?
 - i. Odd numbers
- 11. Under interpretation, what does the A- System A------ say? Under interpretation, what does the B- System B------ say?
 - a. Under interpretation, the A-System says that to be a theorem you must have an even number of hyphens within the theorem. Under interpretation, the B-System says that to be a theorem you must have an odd number of hyphens within the theorem
- 12. What does it mean for a set to be "recursively enumerable"? What does it mean for a set to be "recursive"?

- a. For a set to be recursively enumerable means it can be generated according to typographical rules. For example: the set of C type theorem, the set of theorems of the MIU System, the set of theorems of any formal system. For a set to be recursive is like a figure whose ground is also a figure. The set is recursively enumerable, and its compliment is also recursively enumerable.
- 13. Argue that the set of even numbers is **recursively enumerable**.
 - a. The set of even numbers is recursively enumerable because the set can be generated according to typographical rules like in the A- System.
- 14. Argue that the set of even numbers is **recursive**.
 - a. The set of even numbers is recursive because the set of even numbers itself is recursively enumerable and its compliment the set of odd numbers is also recursively enumerable.
- 15. Argue that the set of prime numbers is **recursively enumerable**.
 - a. The set of even numbers is recursively enumerable because the set can be generated according to typographical rules like in the C- System.
- 16. Argue that the set of prime numbers is **recursive**.
 - a. The set of even numbers is recursive because the set of prime numbers itself is recursively enumerable and its compliment the set of composite numbers is also recursively enumerable.
- 17. In a sentence or two, explain why you think that I am not asking you in this problem set to derive something like P----- within the system
- 18. Answer the following questions about the @|- system.
 - a. How many axioms in the system? How many rules in the System? How many Theorems in the system?
 - i. There is one axiom, 34 rules, and infinite number of theorems in the system.
 - b. Show that @||-|||-||-is a theorem of the @|-system by performing a derivation within the System.

i.	@ - -	(Axiom)
ii.	@ - -	(Rule 6)
iii.	@ - -	(Rule 4)
iv.	@ - - -	(Rule 2)
v.	@ - - -	(Rule 7)
vi.	@ - -	(Rule 5)
vii.	@ - - -	(Rule 6)
viii.	@ - - - -	(Rule 1)

c. Show that CDEFGABC is a theorem of the @|- System by performing a derivation within the system.

i.	@ - -	(Axiom)
ii.	C - -	(Rule 8)
iii.	CD - -	(Rule 11)
iv.	CDE - -	(Rule 15)
v.	CDEF -	(Rule 20)

vi.	CDEFG -	(Rule 21)
vii.	CDEFGA -	(Rule 25)
viii.	CDEFGAB -	(Rule 29)
ix.	CDEFGABC	(Rule 34)

d. Show that GABCDEXG is a theorem of the @|- System by performing a derivation within the system.

i.	@ - -	(Axiom)
ii.	G - -	(Rule 9)
iii.	GA - -	(Rule 25)
iv.	GAB - -	(Rule 29)
v.	GABC -	(Rule 34)
vi.	GABCD -	(Rule 11)
vii.	GABCDE -	(Rule 15)
viii.	GABCDEX -	(Rule 19)
ix.	GABCDEXG	(Rule 24)

e. Show that DEXGABVD is a theorem of the @|- System by performing a derivation within the system.

i.	@ - -	(Axiom)
ii.	D - -	(Rule 10)
iii.	DE - -	(Rule 15)
iv.	DEX - -	(Rule 19)
v.	DEXG -	(Rule 24)
vi.	DEXGA -	(Rule 9)
vii.	DEXGAB -	(Rule 29)
viii.	DEXGABV -	(Rule 33)
ix.	DEXGABVD	(Rule 14)

- f. What do you think I had in mind when I invented this system?
 - i. What I believe you had in mind when you invented this system is to show us an example of a system that did not just consist of a letter or two with a small number of rules. You wanted to show that a system could be composed of multiple different character strings with various rules to follow.